
REINFORCEMENT LEARNING FOR SNAKE
Q-learning approach to the problem

Chengheng Li Chen
Computer Science and Pure Math

UCLA, University of Barcelona

Taro Iyadomi
Data Theory

UCLA

Lizabeth Annabel Tukiman
Mathematics of Computation

UCLA

Abstract

Reinforcement Learning (RL) has been widely uti-
lized over the years to train agents for complex games
such as Go and StarCraft. Inspired by these achieve-
ments, particularly AlphaZero, we aim to develop an
RL model for the popular game of Snake. This study
focuses on applying Q-Learning (QL) and Deep Q-
Learning (DQL) to evaluate their performance in this
context. Simplifying the state definition by using the
relative positions of the snake’s head with respect to
the apple proves to be a decent approximation for
vanilla Q-Learning. However, this state simplification
poses challenges for the advanced DQL version, lead-
ing to overfitting and suboptimal performance. This
paper discusses the methodologies employed, the chal-
lenges faced, and the comparative performance out-
comes of both techniques.

Code and additional resources: Github Link

1. Introduction

The classic snake game was created in 1976
(Wikipedia, 2023) and consists of controlling a
long, thin creature simulating a snake, which
moves around a bordered playing area attempt-
ing to consume apples that re-spawn in random
positions. The snake grows longer each time it
eats an apple, and as it grows, it becomes increas-
ingly difficult to avoid colliding with the walls or
the snake’s own body, which would end the game
1.

This game first appeared in arcade machines,
and by 1998 it was released on the iconic Nokia
phones (Wikipedia, 2024b), where the player uses
the arrow buttons to move the snake on a tiny
greenish screen (see Figure 1). In those years,
the game rose to popularity because the catalog
of the famous Nokia phones was limited to fewer
than five games. Moreover, the game’s simplicity
contributed to its success, as it did not require
advanced technology.

Over the years, this simple game has become
a challenge for AI researchers. Researchers try
to create autonomous agents capable of attain-
ing the maximum score, which has proven to be

1The game can be played here https://g.co/kgs/
Hw7Psby

Figure 1: Snake in a Nokia phone (Reddit)

a difficult task due to the random apple positions
on the grid and other stochastic factors. As a
result, creating a high-performing Snake AI de-
mands advanced algorithms and problem-solving
methods.

Therefore, the aim of this project is to ex-
plore the performance of two well-known rein-
forcement learning algorithms, Q-learning and its
advanced version, deep Q-learning, within the en-
vironment of the snake game. We aim to compare
the performance of these two algorithms on dif-
ferent reward functions and check whether deep
Q-learning is better than Q-learning in the do-
main of this game.

2. Preliminaries

Humans have been learning through a sys-
tem of punishment and reward since childhood,
which is corroborated by several studies in neuro-
science and cognitive science (Edita Navratilova
and Frank Porreca, 2014). For example, failing
an exam often results in a type of punishment,
while achieving a good grade typically leads to
some kind of reward. This method is not exclu-
sive to humans; it can also be applied to many
animals, such as lions and elephants. Unfortu-
nately, we can find that in several cases, animals
are frequently forced to perform tasks causing
them pain and when they complete the task, they
are rewarded with food. Repeating this process
several times teaches animals that performing the
task well will help them avoid suffering and earn
a reward. This proves that the punishment and
reward system is highly effective.

Similarly, we can apply this system to train
our AI agent to learn how to behave in an es-

1

https://github.com/ChenghengLi/RL_Snake.git
https://g.co/kgs/Hw7Psby
https://g.co/kgs/Hw7Psby
https://www.reddit.com/r/nostalgia/comments/blp9mj/nokia_3310_snake_game_i_loved_this_so_much_this/

tablished environment by punishing it if it per-
forms an incorrect action and rewarding it if it
gets closer to the goal. This model has been
proven very useful in several fields where we
can give direct feedback to the agent concerning
the action it performed, such as in video games
or aligning large language models (LLMs) using
the reinforcement learning from human feedback
(RLHF) technique.

2.1. Reinforcement learning

Reinforcement learning is a machine learning
technique inspired by the system of punishment
and reward. It involves allowing an AI agent
to explore the environment freely and providing
feedback on its actions.

Formally, we can define the model as an agent
that can explore an environment represented by
a Markov Decision Process (MDP). An MDP can
be defined as a 5-tuple (S, s0,A, R, P) where:

• S is the set of all valid states.

• s0 ∈ S is the initial state of the agent.

• A is the set of all valid actions.

• R : S × A × S → R represents the reward
that the agent receives at state s by perform-
ing action a and ending at state s′, denoted by
R(s, a, s′).

• P : S × A → P(S) is the transition function
that provides the set of all possible next states
(s′) for a given state s and action a. Then
we have that P (s′ | s, a) is the probability of
transitioning into state s′ if the agent starts at
state s and take action a.

Our agent interacts with an environment to
achieve a specific goal. The agent starts at an
initial state s0 and selects an action a. The envi-
ronment responds by transitioning to a new state
s′ with a probability P (s′ | s, a). The agent then
receives a reward R(s, a, s′) based on the action
taken and the resulting state (see Figure 2). This
process continues iteratively, with the agent se-
lecting actions, transitioning between states, and
receiving rewards, until it either reaches a goal
state or a predefined depth limit, at which point
the training episode ends and a new one begins.

The objective of the agent is to learn a pol-
icy (π : S → A) that maximizes the cumulative
reward over time. This involves exploring or ex-
ploiting (see subsection 2.4) different actions and
learning from the outcomes to make better deci-
sions in the future 2.

2More information here: OpenAI Spinning Up

Figure 2: An iteration of reinforcement learning

2.2. Q-Learning

Q-learning is a model-free reinforcement
learning algorithm that aims to learn the opti-
mal action-selection policy for an agent interact-
ing with an environment.

Given an MDP, the Q-value for a state-action
pair (s, a) is updated using the Temporal Differ-
ence (TD) error, controlled by the learning rate
α. The TD error is the difference between the
target value and the current Q-value. The tar-
get value typically includes the reward received
after taking action a in state s and the maximum
Q-value of the next state s′ (see Figure 3).

Q(s, a) Q(s, a)+α[r + γmax
a′

Q(s′, a′)︸ ︷︷ ︸
Target value

−Q(s, a)

︸ ︷︷ ︸
Temporal difference (TD)

]

Q(s, a) is the Q-value, representing the expected cumulative
reward of taking action a in state s; α ∈ [0, 1] is the learn-
ing rate, that determines how much new information over-
rides old information; r = R(s, a, s′) is the immediate re-
ward received after taking action a in state s; γ ∈ [0, 1] is the
discount factor, that quantifies the importance of future re-
wards; maxa′ Q(s′, a′) is the maximum Q-value over all possible
actions a′ in the next state s′.

Figure 3: Q-learning update rule

The core of the Q-learning algorithm is the
aforementioned update rule based on the Bell-
man equation, which iteratively refines the esti-
mated value of taking a specific action in a given
state based on the received rewards and the es-
timated future rewards, converging to the opti-
mal action-value function (Watkins, Christopher
J. C. H., 1992).

Then the policy of our agent given a deter-
mined state s ∈ S will be:

π(s) = argmax
a∈A

Q(s, a)

In Q-learning, Q-values are stored in a table of
size |S| × |A| (see Figure 4). In other words, the
size of the table is proportional to the number of
states, which makes this algorithm unsuitable for

2

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

tackling complex problems with a vast number of
states. For example, in chess, with an estimated
number of 10120 different positions (Wikipedia,
2024a), creating a Q-table for all states is infea-
sible due to current memory limitations.

2.3. Deep Q-Learning

Deep Q-learning, an advanced version of Q-
learning, uses neural networks instead of a Q-
table to approximate the Q-values for state-
action pairs. These neural networks approximate
unvisited states with already visited states, re-
ducing the number of states we need to explicitly
visit to achieve an optimal policy. Hence, it is a
better approach for more complex problems.

The neural network architecture consists of
an input layer, one or more hidden layers, and
an output layer. The input layer receives the
state information as an input. This input then
propagates through the hidden layers, with each
hidden layer containing neurons that apply non-
linear transformations to the data. Finally, the
output layer is sized to match the action space,
with each neuron representing the Q-value of a
specific action (see Figure 4).

Figure 4: Q-Learning vs Deep Q-learning

Then, the loss function minimizes the differ-
ence between the predicted Q-values and the tar-
get Q-values, which are computed using the Bell-
man equation:

Q(s, a)← r + γmax
a′

Q(s′, a′)

Using a neural network to compute Q-values
allows us to efficiently handle high-dimensional

state spaces and large action spaces. This ap-
proach maintains the simplicity of accessing the
policy, as it remains consistent with selecting the
action with the highest Q-value. However, in-
stead of selecting the maximum value from a row
in a table, we select it from the output of a neural
network.

2.4. Exploration vs Exploitation

The balance between exploration and ex-
ploitation is a critical aspect of making good de-
cisions in reinforcement learning. Exploration is
essentially trying new actions to see what rewards
they have attached to them, while exploitation is
the process of picking actions that the agent al-
ready knows will have high rewards from prior
experience.

One of the most popular methods to deal with
this trade-off is the ε-greedy approach. With a
probability ε, the agent will take any random ac-
tion and with the remaining probability 1−ε, the
agent will take an action associated with a higher
reward based on estimate. ε becomes smaller
over time as the agent learns more about the en-
vironment, moving from exploration to exploita-
tion.

This adaptive behavior allows the agent to ini-
tially explore a wide range of actions in an at-
tempt to learn more about the environment until
it learns enough, at which point it slowly starts
to trade off exploration with exploitation to max-
imize the cumulative rewards.

3. Problem formalization

For the snake game, we can see that the agent
moves in a 2D world that can be defined as a grid
of size W ×H, where W is the grid’s width and
H is the grid’s height. Moreover, our agent can
only move forward, right, or left. Then we can
define the MDP as follows.

3.1. State Space (S)
Our agent will be able to move in a 2D world

(see Figure 5), and in each cell of the grid, the
agent could be facing a determined direction.
Therefore, an intuitive definition of a state is
given by a 3-tuple of w, the position of the snake
on the x-axis, h, the position of the snake on the
y-axis, and d, the direction in which the snake is
facing. Additionally, we will add the final state
”Game Over”, which is the state to transition to
when the snake collides and dies. Formally, our
set of states will be:

S1 = {(w, h, d) | 1 ≤ w ≤W and 1 ≤ h ≤ H

and d ∈ {Up, Down, Right,Left}}
∪ {Game Over}

3

However, this definition of states does not
work in a practical world since it yields a huge
number of states of the orderW×H×4, making it
quite difficult to visit all the states and train the
agent for every situation. Moreover, these states
do not track the position of the apple. Hence, if
we were to add the position of the apple to the
tuple, the number of states grows significantly as
the grid gets bigger.

A better practice is to define a state as the
relative position of the snake’s head with respect
to dangers on the grid and the apple. To do so,
we will keep track of 6 parameters as Booleans:

• df : if there’s danger directly at the front.

• dr: if there’s danger directly on the right.

• dl: if there’s danger directly on the left.

• ff : if the food is to the front.

• fr: if the food is to the right.

• fl: if the food is to the left.

Here, “danger” refers to a wall or part of the
snake’s body.

Formally, we have that

S2 = {(df , dr, dl, ff , fr, fl) |
df , dr, dl, ff , fr, fl ∈ {0, 1}}

∪ {Game Over}

For example, in Figure 5, the state is
(0, 0, 0, 1, 1, 0). Therefore, we can observe that
the set of states is independent of the grid size,
making this definition more scalable.

Figure 5: Snake 2D World

Symmetry of 4 directions: We claim that
our definition of states in S2 is independent of
the direction of the snake.

Proof. Consider the state representation
(df , dr, dl, ff , fr, fl). We need to show that
this representation is invariant under the four

possible orientations of the snake’s head: up,
down, left, and right.

Let the snake’s head initially face up. The
parameters are defined as follows:

• df : danger in the cell directly above.

• dr: danger in the cell directly to the right.

• dl: danger in the cell directly to the left.

• ff : food in a cell above.

• fr: food in a cell to the right.

• fl: food in a cell to the left.

Now, consider the snake’s head facing right (a
90-degree clockwise rotation). The new parame-
ters are:

• df : danger in the cell directly to the right.

• dr: danger in the cell directly below.

• dl: danger in the cell directly above.

• ff : food in a cell to the right.

• fr: food in a cell below.

• fl: food in a cell above.

Applying 90-degree rotations reiteratively like
in Figure 6, the relative positions of danger and
food with respect to the snake’s head are con-
sistently defined in terms of front, right and
left. Therefore, the state (df , dr, dl, ff , fr, fl) re-
mains invariant under 90 degrees rotations, prov-
ing that our definition of states in S2 is direction-
ally invariant.

Figure 6: Invariant states via rotation

3.2. Initial state (s0)

The initial state of the agent will vary each
game since the generation of the apple on the
grid is random. However, from the definition of

4

states S2, we can see that the agent’s initial posi-
tion does not bias the training process, since the
agent learns to make decisions based on the rel-
ative conditions it encounters, which are consis-
tent regardless of its initial position on the grid.

3.3. Action Space (A)
Since the snake is a very simple game, the

only actions that the agent can take in from a
determined state will be going to the right, going
to the left, or continuing forward (see Figure 7).
Therefore, our action space has the following el-
ements:

A = {right, left, forward}

Figure 7: Actions that our agent can take

3.4. Reward function (R)

The reward function is the main challenge of
this problem, where we have to find an optimally
aligned reward. We will start with a naive version
and then implement more complex reward func-
tions. Hence, we will dedicate an entire section
to discussing it. See section 5.

3.5. Transition function (P)

The transition function in the Snake game can
be easily determined when the snake is moving
towards an apple, as the game is deterministic
in these moments. Given a specific state s and
action a, you can predict the next state s′ exactly.

However, when the snake eats the apple, the
apple respawns in a random location on the grid.
At this point, the next state becomes stochastic.
The new state will be equally probable across all
possible states that maintain the danger cells df ,
dr, and dl.

4. Problem implementation

4.1. Environment setup

For the environment setup, we got the Snake
Game code from an open-source GitHub reposi-
tory3. This repository included the core parts of
the snake game, including its playability.

3https://github.com/patrickloeber/python-
fun/blob/master/snake-pygame/snake_game.py

We added several functions to implement the
reinforcement learning algorithms, such as the
function to get the current state of the game and
other types of getters.

4.2. Q-learning

The Q-learning agent implementation can
be found in QLearning.py. To implement
this agent, we used dictionaries to represent
the Q-tables, allowing us to access the Q-
value for each state-action pair as follows:
Q_table[<state>][<action>].

4.3. Deep Q-learning

The Deep Q-learning agent implementation
can be found in DeepQLearning.py.

One of the main challenges of using neural net-
works for Q-learning is the instability caused by
shifting Q-values. Q-values are updated using
the Bellman equation, which relies on the current
network’s predictions. If we use these predictions
to update the network itself, it creates a feedback
loop where the network chases a moving target.
This can lead to divergence or oscillations in the
Q-values.

Deep Q-Networks (DQN) introduce a target
network (target_net) to address this issue. The
target network is a duplicate of the main Q-
network (policy_net), but its weights are up-
dated less frequently, typically every few thou-
sand steps. This provides a more stable target
for updating the Q-values, reducing oscillations
and helping the Q-values to converge more reli-
ably.

In addition to the target network, we employ
a soft update mechanism to further enhance sta-
bility. Soft updates incrementally adjust the tar-
get network’s weight towards the main network’s
weights using a parameter τ , instead of updat-
ing the target network’s weights all at once. The
update rule is given by:

θ′ ← τθ + (1− τ)θ′

where θ is the weights of the main Q-network
and θ′ is the weights of the target network. This
approach ensures that the target values change
smoothly, reducing abrupt changes and further
stabilizing the training process.

One more problem in reinforcement learning is
the high correlation of experiences, mostly in se-
quential tasks. Training a neural network on such
correlated data can result in inefficient learning
and poor generalization. Experience replay is
a mechanism that saves the agent’s experiences:
state, action, reward, and next state. It samples
the mini-batches of experiences during training

5

https://github.com/patrickloeber/python-fun/blob/master/snake-pygame/snake_game.py
https://github.com/patrickloeber/python-fun/blob/master/snake-pygame/snake_game.py

from this buffer randomly for updating the Q-
network. Random selection breaks the link be-
tween successive experiences, resulting in more
consistent and efficient learning.

This allows the agent to reuse experiences
many times for greater data efficiency and helps
the network learn from experiences that seldom
occur but are important. Because experiences are
sampled at random, the network is less depen-
dent on previous experiences, which helps avoid
overfitting the network to recent experiences and
makes sure that the network works well for dif-
ferent states and actions.

5. Reward function

5.1. Naive reward function

The naive reward function involves rewarding
1 point to the agent when it eats an apple and
penalizing 1 point from the agent when it ends
the game either by colliding to a wall or to itself.

Game over Eat apple Other

-1 +1 0

Table 1: Naive reward table

5.2. Advanced naive reward function

Similar to the naive reward function, the ad-
vanced naive reward function involves rewarding
the agent when it eats an apple and penalizing it
when it ends the game. The difference is in the
magnitude of the reward and penalty given the
direction of the agent.

Game over Eat apple Other

F -2 +2 0
L/R -1 +1 0

F: Forward — L: Left — R: Right

Table 2: Advanced naive reward table

5.3. Manhattan distance to the apple

The Manhattan distance reward function re-
tains the reward and punishment system for eat-
ing an apple and losing the game from the naive
reward function and adds a Manhattan distance
computation between the head of the snake and
the apple before and after each turn. If the agent
doesn’t reach an apple or end the game, it’s re-
warded if the Manhattan distance to the apple is
less than its previous state and punished other-
wise.

Game over Eat apple Closer Other

-100 +30 +1 -5

Table 3: Manhattan distance reward table

6. Training

Agents were trained in a 10× 10 grid environ-
ment, and their performance was subsequently
evaluated in larger grid environments, as state
representations are independent of grid size (see
Figure 10). Firstly, the optimal number of train-
ing episodes (games) required for effective agent
training was determined. Subsequently, multiple
agents were trained using the established episode
count across various reward functions.

6.1. Episode Count Determination

The primary objective of this phase was to as-
certain the appropriate number of episodes neces-
sary for the training process. The advanced naive
reward function was employed and hyperparam-
eters were kept constant throughout the experi-
ments. A range of episode counts was selected,
from which several reasonable values were chosen.
For each selected value, 10 different agents were
trained to assess performance. For Q-learning
agents, episode counts varied between 10 and
50,000 (see Figure 8), while for deep Q-learning
agents, episode counts ranged from 5 to 1,000
(see Figure 9).

Figure 8: Scores vs. Episode Count (Q-
learning)

Upon detailed analysis of the figures, it was
determined that an episode count of 5000 is
appropriate for Q-learning, as performance im-
provements were observed to plateau beyond this
threshold. For deep Q-learning, an episode count
of 75 was selected based on similar observations.

6

Figure 9: Scores vs. Episode Count (Deep Q-
learning)

This selection also took into account the trade-
off between the training time required and the
performance of the agent.

6.2. Hyperparameter tuning

For the deep Q-learning agents, a random
search was conducted to determine the optimal
values for each hyperparameter, utilizing the ad-
vanced naive reward function. This approach was
not applied to Q-learning, as the default hyper-
parameters were found to be quite stable and
yielded satisfactory results. During this process,
100 agents were trained with parameters selected
randomly from either a uniform or log-uniform
distribution, with incremental steps of a deter-
mined size, as detailed in Table 4.

Param. Type Start End Step

α LogU 10−5 10−1 N/A

γ Unif 0.8 0.99 0.01

ε start Unif 0.5 1.0 0.1

ε end Unif 0.01 0.1 0.01

ε decay Unif 0.990 0.999 0.001

τ Unif 0.001 0.01 0.001

LogU: Log-Uniform — Unif: Uniform

Table 4: Distributions from which each hyper-
parameter was selected

After completing the process, we kept the
hyperparameters that yielded the best results,
which are detailed in Table 5.

6.3. Training Top-Performing Agents

After gathering all parameters information,
100 agents were trained for each model-reward
combination using the selected hyperparameters

Parameter Optimal values

α 0.000125

γ 0.96

ε start 0.5

ε end 0.0999

ε decay 0.991

τ 0.006

Table 5: Optimal values of each hyperparameter

and episodes. For each agent trained with a spe-
cific reward function and model, 1,000 games
were played, and the average score across all
games was computed. The agent with the high-
est average score for each reward function was se-
lected. This process resulted in six best agents:
three from Q-learning and three from deep Q-
learning, with agents in each group trained using
different reward functions.

Figure 10: Summary of training and bench-
marking process

7. Benchmarking

To evaluate the performance and generaliza-
tion ability of the trained agents, experiments
were conducted on grids of different sizes. This
approach helps to understand which aspects of
the environment the agents learned during the
training process. The agents were tested on the
training grid of size 10× 10 and on a more com-
monly used grid of size 32× 20.

7.1. Grid 10 x 10

Using the top-performing agents from Section
6.3, we benchmarked each of them on a 10 × 10

7

grid for 1000 games. The results of each reward
function for Q-learning and deep Q-learning are
shown in Table 6 and Table 7, respectively.

Reward Avg score Max score

Naive 30.65 50
Advanced naive 31.27 51
Manhattan dist. 28.59 45

Table 6: Scores across reward functions for Q-
learning on a 10x10 grid

Reward Avg score Max score

Naive 24.06 50
Advanced naive 23.83 53
Manhattan dist. 34.73 57

Table 7: Scores across reward functions for deep
Q-learning on a 10x10 grid

Notably, the deep Q-learning agent trained us-
ing the Manhattan distance reward function ex-
hibited superior performance, achieving both the
highest average score and the highest individual
score across 1,000 games. However, Q-learning
agents utilizing other reward functions consis-
tently outperformed their deep Q-learning coun-
terparts on average. This suggests that neural
networks can extract information from the Man-
hattan distance, enhancing the deep Q-learning
approach.

7.2. Grid 32 x 20

We repeated the experiments of the previous
section on an expanded grid (32x20) to test their
generalizability. Unlike our previous results, all
three Q-learning agents, including the one using
the Manhattan distance reward, outperformed
their deep Q-learning counterparts in terms of
average scores as seen in Table 8 and Table 9. Al-
though the best performing agent on the training
grid, the deep Q-learning agent using the Man-
hattan distance reward, had a higher top score
than its Q-learning equivalent, its average score
was the lowest out of all six agents tested. This
suggests that deep Q-learning fails to generalize,
which we will discuss in the conclusion (see sec-
tion 8).
8. Conclusion

One of the main advantages of our model’s
state definition is its grid size independence, al-
lowing us to tune and train the agent in small grid
sizes and use it in larger grid environments. How-
ever, our state representation is very simple, lim-
iting the agent’s capacity to learn. For instance,

Reward Avg score Max score

Naive 82.41 134
Advanced naive 86.56 136
Manhattan dist. 72.08 122

Table 8: Scores across reward functions for Q-
learning on a 32x20 grid

Reward Avg score Max score

Naive 61.04 121
Advanced naive 60.15 114
Manhattan dist. 54.02 131

Table 9: Scores across reward functions for deep
Q-learning on a 32x20 grid

Figure 11: Scores Comparison Across Reward
Functions and Grid Sizes

the Manhattan distance does not improve perfor-
mance since the agent could be getting closer or
farther from the apple while staying in the same
state.

After benchmarking, we noticed that in small
state spaces, DQL often performs poorly or has
more difficulty generalizing compared to tradi-
tional QL due to several factors:

• Model Complexity: The neural network in
DQL introduces significant complexity, lead-
ing to overfitting and the capturing of noise
instead of underlying patterns.

• Sample Efficiency: QL updates Q-values
directly for each state-action pair, making it
more sample-efficient, whereas DQL requires
more samples to train the neural network ef-
fectively.

• Stability and Convergence: DQL requires
careful hyperparameter tuning for stability
and convergence, while QL’s tabular method
is more straightforward and stable.

8

• Computational Overhead: Training the
neural network in DQL introduces unneces-
sary computational overhead, slowing down
the learning process in small state spaces.

Consequently, the increased complexity, poten-
tial of overfitting, and computational overhead
of DQL lead to its poorer performance compared
to the simpler and more direct QL approach in
small state spaces.

However, we can see that in the 10× 10 train-
ing grid, the best policy is given by the DQL
agent using the Manhattan distance. Our hy-
pothesis is that the Manhattan distance reward
function performs well for DQL in the 10 × 10
training grid because the neural networks can
extract implicit information such as the size or
shape of the grid from the reward. This may ex-
plain why the policy does not generalize well to
other grid sizes.

9. Future work

After this project, the most natural question
is how we can improve the model to score more
points. One natural approach would be defining
more complex states that could grow with respect
to the grid size, such as S1, and trying to use DQL
to see if the performance increases. Introducing
the concept of the absolute position of the snake
makes the definition of the distance to the apple
more meaningful.

Moreover, observations of the agent playing
the game suggest that guiding the agent directly
towards the reward is not necessarily the best op-
tion. When the snake length is long, the agent
may take a longer path to avoid collisions. There-
fore, we may introduce a more complex type of
reward function.

One suggestion is the Euclidean distance re-
ward function. It is similar to the Manhattan dis-
tance reward function but uses a Euclidean dis-
tance computation instead of a Manhattan one.
It incorporates the difference between the dis-
tances in the current and next states in a different
manner. If the agent does not reach an apple or
end the game, it is rewarded or penalized by the
logarithm of the ratio of the sum of the length
of the snake (Lt) and the distance between the
snake’s head and the apple in the current state
(Dt) to that in the next state (Dt+1), which is
positive when Dt > Dt+1 and negative otherwise.
By considering the length of the snake, this func-
tion allows for more tolerance when the snake is
longer (Wei, Z., Wang, D., Zhang, M., Tan, A.-
H., Miao, C., Zhou, Y., 2018).

Game over Eat apple Other

-1 +1 logLt

(
Lt+Dt

Lt+Dt+1

)
Table 10: Euclidean distance reward table

Another common approach to improve the
model would be using other reinforcement learn-
ing models such as Proximal Policy Optimiza-
tion (PPO), which deals with constraints better
and can potentially yield higher performance im-
provements.

Contributions

The project was a collaborative effort, with
the entire team participating in reviewing the
project and providing feedback on the completed
work. However, the primary contributions of
each team member can be highlighted as follows:

• Chengheng Li Chen: Provided theoretical
knowledge of reinforcement learning, formal-
ized the problem, and implemented the models
in Python.

• Taro Iyadomi: Conducted benchmarking
and training execution, and developed visual-
izations tools.

• Lizabeth Annabel Tukiman: Researched
and defined the reward functions, and de-
signed most graphical content.

Appendix

Training Process Details

The source code that implements the
training process for the models, including
episode count determination, hyperparameter
tuning, and agent training, can be found in
src/training.ipynb in the GitHub repository.
The best-performing agents have been saved in
src/policies, which can be loaded and bench-
marked using src/benchmark.ipynb. Remem-
ber to set up the environment by following the
instructions in Readme.md to install all the de-
pendencies.

Hardware Specifications

The models were trained using the following
hardware:

• Processor: AMD Ryzen 7 3700X, 8-Core

• RAM Memory: 16 GB DDR4 RAM

• GPU Card: NVIDIA GeForce RTX 3060

9

Challenge Our Best Agent

Anyone can play against our best agent on the
32× 20 grid. To do so, clone the repository from
https://github.com/ChenghengLi/RL_Snake
and execute play_snake.py. Follow the instruc-
tions in Readme.md to set up the environment.

References

Edita Navratilova and Frank Porreca. 2014. Re-
ward and motivation in pain and pain relief.

Watkins, Christopher J. C. H. 1992. Q-learning.
Mach Learn 8, 279–292 (1992).

Wei, Z., Wang, D., Zhang, M., Tan, A.-H., Miao,
C., Zhou, Y. 2018. Autonomous agents in
snake game via deep reinforcement learning.

Wikipedia. 2023. Snake (video game). [Online;
accessed 17-May-2024].

Wikipedia. 2024a. Shannon number. [Online;
accessed 30-May-2024].

Wikipedia. 2024b. Snake (1998 video game). [On-
line; accessed 17-May-2024].

10

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301417/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301417/
https://doi.org/10.1007/BF00992698
https://hdl.handle.net/10356/89882
https://simple.wikipedia.org/wiki/Snake_(video_game)
https://en.wikipedia.org/wiki/Shannon_number
https://en.wikipedia.org/wiki/Snake_(1998_video_game)

	Introduction
	Preliminaries
	Reinforcement learning
	Q-Learning
	Deep Q-Learning
	Exploration vs Exploitation

	Problem formalization
	State Space (S)
	Initial state (s0)
	Action Space (A)
	Reward function (R)
	Transition function (P)

	Problem implementation
	Environment setup
	Q-learning
	Deep Q-learning

	Reward function
	Naive reward function
	Advanced naive reward function
	Manhattan distance to the apple

	Training
	Episode Count Determination
	Hyperparameter tuning
	Training Top-Performing Agents

	Benchmarking
	Grid 10 x 10
	Grid 32 x 20

	Conclusion
	Future work

