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I.​ Abstract 

Predicting customer behavior is a crucial part of the e-commerce industry for platforms 

such as Fingerhut to enhance user experience and drive business. Our team leveraged the 

extensive dataset provided to us from Fingerhut to focus on predicting whether a customer will 

complete a “journey” on the company’s web page; defining a successful journey as one where 

the customer reaches the ‘order shipped’ event stage. After our team performed meticulous 

feature engineering and cleaning on the dataset, we evaluated and trained the data on several 

different models, such as Logistic Regression, Gradient Boosting, Neural Networks, XGBoost, 

and Decision Trees, finding the XGBoost model to be the most effective, achieving the highest F1 

score of 73%. Although our team faced many limitations due to the extensive size of the dataset 

as well as our limited computing power, we believe our results to be of great value to the 

Fingerhut team and to have the potential to be leveraged to learn more about their customer’s 

behavior and evidently drive business in the coming years.  

 

II.​ Introduction 

In the contemporary landscape of e-commerce, Fingerhut stands out as a pioneering 

online retailer offering a diverse array of products ranging from electronics to housewares, 

apparel, and sporting goods. What distinguishes Fingerhut in the market is its unique credit 

model, which empowers customers, particularly those with limited or poor credit histories, to 

access products they might otherwise find financially challenging. Through the provision of 
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Fingerhut credit accounts, customers can make monthly payments on purchases, thus facilitating 

their ability to afford desired items while simultaneously working towards rebuilding their credit 

profile. 

For the purpose of this analysis, we have been granted access to a dataset encompassing 

Fingerhut's FreshStart customer universe, i.e. customers that are allowed to make a single 

purchase up to their credit limit, typically ranging between $150-$200, before transitioning to a 

revolving line. This dataset documents key events along the customer journey, from the initial 

credit application to the pivotal moment of order shipment. Each customer's trajectory is 

delineated by milestones, including the application for credit, the first purchase, the down 

payment, and the subsequent shipping of the order. Additionally, the dataset captures ancillary 

events such as website visits and cart additions, providing rich insights into customer behavior 

and engagement. 

Fingerhut seeks our expertise to delve into the intricacies of customer journeys. Whether 

we unravel the typical trajectory a customer traverses, identify distinguishing features of a 

complete journey, or discern potential obstacles or deviations from the ideal path, by 

understanding the nuances of customer behavior, we aim to illuminate critical indicators that 

may signify a customer’s likelihood of a completing a successful journey.  

Upon completing the data preprocessing and conducting exploratory data analysis, our 

team uncovered compelling insights within the data on the various event stages, timestamps, and 

customer journeys. Thus, we decided that pursuing a model capable of predicting whether a 

customer would make a purchase based on their first couple interactions on the website would 

both leverage the combined strengths of our team as well as provide valuable information for 

Fingerhut. After noting the year-over-year orders shipped decreasing in our initial data analysis, 
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we created this model with the intention of Fingerhut leveraging it to track customer habits and 

utilize the insights the model provides to craft their website and user interface in a way that 

would guide more customers towards making a purchase and hence drive business. Our team 

also believes that the model could also provide Fingerhut information on why they were losing 

customers that were on their website, but did not make a purchase. 

To do this, we must first define a successful journey as one that results in the ‘order 

shipped’ event, the inflection point at which a customer transitions from a closed-end, limited 

line to a revolving line. As many prospecting customers’ journeys end before this crucial event, 

analyzing when and where people lose interest can provide invaluable insights for the growth of 

Fingerhut’s customer base. From here, we began to perform more specific data exploration to 

find a model that would best work with the given data as well as how to formulate a dataset that 

could be fed into the model, our main goal being to provide Fingerhut with a model that could 

predict whether a customer would make a purchase as well as to provide insights that could 

combat their declining revenue year-over-year. 

 

III.​ Data Preparation 

The given data from Fingerhut’s team was limited, featuring a maximum of 13 unique 

features with some events perfectly correlating with others, such as ‘event_definition_id’ and 

‘event_name’. Each row represented an individual customer event which made up a step in one 

of thousands of customer journeys. This dataset presented certain challenges, including duplicate 

rows with identical timestamps and a sequential index for journey steps that was disrupted upon 

removal of such duplicated rows.  
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To address these challenges, we undertook a series of preprocessing steps to ensure data 

integrity and maximize analytical potential. Firstly, we removed duplicate rows based on 

identical timestamps and reindexed the 'journey_steps_until_end' column to preserve its 

sequential property, ensuring consistency in journey step enumeration as shown in Figure 1. 

 

 

Figure 1. Transformation of the ‘journey_steps_until_end’ column after duplicate removal. 

 

 

Subsequently, we transformed the data into wide format by grouping all rows by 

'customer_id', enabling a comprehensive view of each customer's journey across multiple 

dimensions. Leveraging this wide-format structure, we performed extensive feature engineering 

to extract insightful variables that could enable us to accurately predict customer journey 

success. In total, we engineered 27 novel predictors to help conduct our analysis objectives, 

listed and described in Appendix Table 1.  

Notable features include 'num_journeys' and 'max_journeys', quantifying the frequency 

and maximum length of customer journeys respectively. Furthermore, we delineated key 

milestones such as 'first_purchase' and 'order_shipped’, enabling granular assessment of journey 

progression and success. We also leveraged temporal aspects of our data using the 

‘event_timestamp’ variable, such as the creation of the 'time_in_discover' and 'time_in_apply' 
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variables, shedding light on the duration spent in these specific journey stages. We explored 

device usage patterns through 'initial_device', discerning whether customers accessed Fingerhut 

via mobile devices or web browsers, and included lists of the beginnings of each customer’s time 

with Fingerhut by adding a ‘first_n_events’ column (using n=5, n=20) as well as the time delta 

between those events in a ‘time_since_last_event’ column. We then trained an LSTM model to 

generate embeddings for the ‘first_n_events’ and ‘time_since_last_event’ variables to reduce 

dimensionality of these variables while preserving the information within them. We hypothesized 

that a customer’s initial interactions with Fingerhut could drastically affect their relationship with 

the service, making the last two variables crucial for our analysis. 

Furthermore, upon a carefully consideration while training the machine learning models, 

we decided to drop 8 columns from the feature engineered dataset: ‘downpayment_cleared’, 

‘first_purchase’, ‘max_milestone’, ‘downpayment_received’, ‘account_activation’, and 

‘customer_id’, ‘first_20_events’, and ‘time_since_last_event’. This gave us a dataset with 27 

columns, in which 10 columns are embeddings resulting from ‘first_20_events’ and 

‘time_since_last_event’.  

Lastly, all data preparation and feature engineering procedures were replicated on both 

the original dataset and a 5% customer sample dataset, ensuring consistency and scalability in 

model training and analysis. By curating the dataset with informative features, we have laid a 

robust foundation for subsequent analysis and modeling. 

 

IV.​ Data Exploration 

There were a few things that we wanted to explore in order to learn more about our 

dataset. We were very interested in the proportion of customers who ultimately completed a 
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purchase (as indicated by the ‘order shipped’ variable). We noticed that we have a very 

unbalanced dataset as shown in Figure 2. 

 

Figure 2. Proportion of customers with an Order Shipped. 

 

Taking this into consideration. This gave us an accuracy benchmark for our models of around 

80%.  

We also wanted to investigate the ‘discover’ variable. This variable relates to fingerhut’s 

advertising strategies, so we expected to see a measurable correlation in customers who 

interacted with fingerhut’s marketing campaigns and their likelihood to complete a purchase. We 

checked the proportion of customers who had and had not interacted with the ‘discover’ variable. 

As seen in the barplot below, we actually found no significant difference between the amount of 

customers who completed an order. 
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Figure 3. Proportion of customers with and without ‘Discover’ who shipped an order. 

 

Another variable we were interested in is the number of steps a customer took through 

their journey through the Fingerhut site. This varied dramatically for each customer. Many had 

only one or two steps, but there were some that had over hundreds of steps. Considering there 

were multiple outliers with over 1000 steps. We decided to display this distribution on a 

logarithmic scale. As shown in the histogram, the majority of customers had journeys that were 

between 10 and 100 steps.  
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Figure 4. Distribution of the maximum steps in each customer’s journey. 

 

Finally, we also noticed an interesting trend in sales. Within the year, there seems to be a 

large spike in sales around the end of the year in November/December. This is obviously very 

typical for any retailer considering the amount of shopping people do around the holidays. We 

also noticed a spike around March. However, the most noticeable trend that we saw was a 

decrease in traffic over the last 3 years.  
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Figure 5. Weekly Order Analysis by Year. 

 

This was something that we kept in mind as we built our model, understanding that the year, as 

well as time-of-year, could have an impact on Fingerhut sales as well. 

 

V.​ Classification Models 

After delving into the wide format data set by providing a deep description of derived 

features, the subsequent objective was to select the model that best fitted the data and exhibited 

highest performance. In this section, we provide an in-depth analysis of the architectures, 

methodologies, and strategies adopted, which included a diverse spectrum of models ranging 

from statistical or boosting trees to a more abstract model such as a neural network.  

An initial model testing on a proportionally preserved subset of the data revealed poor 

performance due to imbalanced class proportions, with 80% representing customers being 

unsuccessful in the ‘order_shipped’ goal and 20% those who did. To address this imbalance, two 

strategies, upsampling and downsampling, were employed, each with its associated risks of 
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overfitting on the minority category or loss of valuable information. While these strategies 

initially improved model performance, their biases led to a decision to retain the original class 

proportions for realistic reporting of results. 

For model training, we used the preprocessed original dataset with time embeddings, 

which contains 1,665,374 rows and 27 columns, of which 10 columns are the resulting 

embeddings from columns (‘first_20_events’ and ‘time_since_last_event’). First, we explored 

seven different kinds of preliminary models: Logistic Regression, Decision Tree, XGBoost, 

AdaBoost, Gradient Boosting, Light-GBM, and Gaussian Naive Bayes. The reason why we 

considered these models was because we wanted to try out different methods that use different 

methods for inference, for example ensemble methods and probabilistic models. Also, we used 

the Logistic Regression model as our benchmark. After training and testing on these seven 

models, we realized that out of these seven preliminary models, XGBoost had the best 

performance (with LGBM being the second), while the other six preliminary models suffered 

from their low F1 scores. Thus, we decided to move on to both tuning the hyperparameters for 

the XGBoost model as well as designing new complex models for downstream classification 

tasks. For tuning, we utilized the Optuna library to tune the specific hyperparameters: 

‘n_estimators’, ‘max_depth’, ‘learning_rate’, ‘subsample’, ‘gamma’, ‘scale_pos_weight’, 

‘reg_alpha’, and ‘reg_lambda’. This library utilizes a Bayesian Optimization approach to find the 

best and optimal hyperparameters for our models, allowing us to decrease the number of training 

iterations.  

On the other hand, in an attempt to increase the metrics that previous models were 

showing up, we designed a Neural Network in order to see if this kind of algorithm could extract 

uncovered patterns in the data and leverage them in order to get a higher accuracy and f1 score. 
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This Neural Network was designed with the following architecture: five fully connected layers 

with ReLU activations and Dropouts in between, L2 regularization, and finally activated by a 

Sigmoid function. Before feeding the training data into the Neural Network, we also calculated 

the corresponding weights for each label.  

Lastly, we designed a framework that first clusters the data points into one of the two 

clusters, then trained and tested separate XGBoost models. However, due to its worse 

performance, we have decided to omit this design. 

 

VI.​ Results 

It is worth mentioning that the way we assess our models is really important while 

choosing the best model, in this regard we can see that metrics play a crucial role in the measure 

of performance. Therefore, after training our preliminary models we calculated initially the 

accuracy metric which is the standard measure for model performance assessment. The results 

can be seen in the following plot: 

Figure 6: Accuracy of Models by Technique 
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The accuracy scores are divided into three different categories: the scores for the models 

trained with the downsampled data, the scores with the models trained with upsampled data, and 

the scores for the models trained with the original proportion of data. But the analysis over the 

scores are not going to be performed over these results and this is due to the fact that certain 

metrics can lead to misleading results due to the nature of the data. In this regard, the accuracy 

metric is not always a reliable metric for evaluating the model performance and particularly in a 

high unbalanced data set which is our case. Instead, the F1 score stands out as a robust measure. 

The F1 score is calculated using the harmonic mean of precision and recall where its formula is  

 

-score  𝐹1 =  2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

In this sense, the model evaluation was entirely focused on improving the F1 score metric, which 

was the one that trustworthy demonstrated the real performance of the models. The following is 

the plot that contains the F1 scores of the models: 

Figure 7. F1 Scores of Model by Techniques 
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​ For the downsampling scores, it is notable that there were models with an outstanding 

performance such as the Voting Ensemble Model or the Neural Network or even more 

noticeable, the Voting Ensemble Model while working with the upsampling technique. Despite 

that all these performances were all good, the results don’t represent a very good representation 

in a real scenario, but we think it is worthwhile including them in order to contrast the 

performances if the data were all balanced.​  

From the plot above, focusing on the scores for the original proportion, the 4 models with 

best F1 scores were the XGBoost (tuned), Neural Network, Light-GBM, and Voting Ensemble 

model. The naive XGBoost (before tuning) achieved an accuracy of 89.163% and a F1 score of 

69.916%, and the naive LGBM achieved an accuracy of 88.438%, and a F1 score of 66.539%. 

These two models performed reasonably well, but as mentioned in the previous part, we believed 

that the XGBoost can be further improved in terms of its F1 score, especially its ability to 

correctly identify label 1. In addition, the accuracies and f1 score of each model is listed in 

Figure 8 below.  

 

Figure 8. Accuracy and F1 Score of Models 
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​ For the tuning of the XGBoost model, we aimed to increase the F1 score instead of the 

accuracy, as we believed that the model’s ability to correctly identify label 1 is more important 

than its whole accuracy. The resulting score for the fine tuned XGBoost model is: 88.328% in 

accuracy and 72.933% in F1 score. Even though the accuracy of XGBoost is lower than the 

original by around 0.8%, we believe that this is a good tradeoff for the F1 score, which is almost 

3% higher than the original one. We also plotted out the feature importance of the fine tuned 

XGBoost Model. From the graph, we can see that the top 5 most important features are 

‘initial_decive’, ‘event_embedding_3’, ‘most_repeated_event’, ‘has_prospecting’, and 

‘event_embedding_4’.  

 

Figure 9. XGBoost Feature Importances 

 

​ For our Neural Network we had to take into consideration the proportion of classes in our 

data, and so we used while fitting the model the following class weights : {0 : 0.62, 1 : 2.60}. 

Consequently the model was trained over 5 epochs, utilizing the Adam optimizer algorithm and 
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the binary cross-entropy as our objective function to optimize, as the accuracy is the metric of 

evaluation by default, we had to work with it. 

​ In addition, we plotted out the confusion matrices for XGBoost (before tuning), XGBoost 

(after tuning), and Neural Network. The plots are displayed below. From the confusion matrices, 

we can see that both the fine-tuned XGBoost model and the Neural Network outperformed the 

original XGBoost in their performance of the identifying customers who will have their orders 

shipped (label 1 customers). Specifically, the XGBoost before tuning correctly identified 

65.394% of label 1 customers, while the tuned XGBoost correctly identified 81.665% , and the 

Neural Network correctly identified 94.129% (both XGBoost and Neural Network have less type 

II errors). Note that this comes with a price: both the fine tuned XGBoost and the Neural 

Network performed worse in identifying label 0 customers by mistakenly identifying them as 

label 1. However, we believe that this is a good tradeoff since the losses of providing 

advertisements / incentives to customers who are predicted to finish the whole journey would 

likely be way less than the losses of losing real customers who are going to finish the journey.  

 

Figure 10. Confusion Matrices 
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     Figure 11. F1 Scores in Cross Validation by Technique 

 
Finally this last plot shows us the results using the Cross Validation technique for these 

three different models along the three different techniques used in the project. We are focusing 

on the original proportion and as we can observe there is a huge difference between the results 

that XGBoost obtained compared to the GaussianNB and the Logistic Regression. This is a very 

reliable technique that allows us to verify that indeed the metrics obtained in just one simple train 

test split were actual metrics. Moreover, the percentage below represents the standard deviation 

of the means in the f1 scores and in this case is very small which tells us that all these training 

realizations of the XGBoost model across the 5 splits used in the CV technique had very similar 

results. 
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VII.​ Conclusion 

The results of our modeling and analysis reveal that we are able to create a model that 

can predict whether a customer will purchase an item through the website based on the first 20 

events on the website with an F1 score of 72.93%. This achievement marks a significant step 

towards understanding the customer behavior and, we hope, paves the way for Fingerhut to 

derive further insights and analyses to help the company grow in the future. 

However, although the 72.93% accuracy is promising, our team acknowledges different 

constraints and limitations that we faced as well as areas for improvement in the data and 

modeling that could potentially allow us to yield even better results. A major limitation that our 

team faced stemmed from the immense volume of the original dataset matched with our limited 

computing power. The original dataset contained 64,911,906 rows of data. Processing the entire 

dataset for cleaning alone required upwards of three hours. Thus, any iterative adjustments or 

tests we wanted to perform would cause a similarly extensive duration, making the process of 

modeling, analyzing, cleaning, and training extremely time consuming. Although there was a 

smaller sample dataset available, which was 5% the size of the original dataset, this smaller 

dataset introduces many significant risks, such as loss of granularity, overfitting of the model, 

and omission of outliers and critical events. Our solution to this limitation involved utilizing the 

smaller dataset for initial training, cleaning, and analysis, followed by running our end product 

on the entire dataset. Although we yielded promising results, our team believes that access to 

stronger computing power or a more manageable dataset would allow us to enhance the 

predictive accuracy of our model even further and make further analysis regarding customer 

behavior. 
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Our team also identified future steps that could be taken to potentially improve the 

accuracy and fully explore the potential of the data. Due to clustering models' ability to group the 

data in an unsupervised manner, we believe that this could help yield more accurate results by 

allowing for customer segmentation through identifying distinct groups of customers based on 

their behavior and interactions with the web page. Additionally, the grouping aspect could be 

utilized to help feature engineering and potentially help improve the accuracy of the models by 

providing more data on customer behavior patterns. The models we utilized in our project are 

more aimed towards predicting outcomes based on input data. However, clustering could help in 

discovering new structures and similarities in the data that our models were unable to detect, 

hence increasing the accuracy and revealing more about Fingerhut customer trends.  

Overall, our research provides Fingerhut with a model that is designed to predict whether 

a customer will purchase an item, which can be leveraged to learn more about their customers as 

well as their website to find ways to increase orders and evidently drive business. By analyzing 

patterns and trends within the first interactions of customers on the website, our model opens the 

door for Fingerhut to not only identify critical parts of the website that can influence purchasing 

decisions, but also increase the ordering rates.  

 

 

 

 

 

 

 

 

 



19 

VIII.​ Reference 

Harrison, M. (March 21, 2023). Effective XGBoost: Optimizing, Tuning, Understanding, and 

Deploying Classification Models (Treading on Python) (1st ed.). MetaSnake. 

 

IX.​ Appendix 

 

Variable Description 

num_journeys  The number of journeys each customer has gone through.  

max_journeys The number of steps of the longest journey per customer. 

discover Whether or not the customer has gone through the 'discover' stage. 

number_accounts The number of account_ids per customer_id. 

more_one_journey Whether or not a customer has multiple journeys. 

repeated_event The most repeated event a customer has experienced. 

avg_length_seq The average journey length of each customer. 

has_prospecting Whether or not the customer has experienced the 'prospecting' event.  

has_pre_application Whether or not the customer has experienced the 'pre application' event.  

approved_credit Whether or not the customer has achieved the 'approved_credit' milestone. 

first_purchase Whether or not the customer has achieved the 'first_purchase' milestone.  

account_activation Whether or not the customer has achieved the 'account_activation' milestone.  

downpayment_received Whether or not the customer has achieved the 'downpayment_received' milestone. 

downpayment_cleared Whether or not the customer has achieved the 'downpayment_cleared' milestone.  

order_ships Whether or not the customer has achieved the 'order_ships' milestone.  

max_milestone The highest milestone a customer has achieved. 
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initial_device Initial device used to access Fingerhut service. 

time_in_discover The amount of time spent (seconds) in the 'discover' phase. 

time_in_apply The amount of time spent in the 'apply for credit' phase. 

first_n_events A list of the first n events experienced by the customer. 

time_since_last_event The time between each of the n events from first_n_events. 

total_time_spent The time between the first event and the nth event. 

time_mean The average time between events. 

time_std The standard deviation of time between events. 

time_max The longest time between two events. 

 
Appendix Table 1. Name and description of 25 feature engineered variables.  
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