
1

Stats M148 Final Project
Modeling Customer Behavior

Darren Hsieh, Taro Iyadomi, Ryan Kawamura, Axel Malvaez, Daniel O’Brien

I.​ Abstract

Predicting customer behavior is a crucial part of the e-commerce industry for platforms

such as Fingerhut to enhance user experience and drive business. Our team leveraged the

extensive dataset provided to us from Fingerhut to focus on predicting whether a customer will

complete a “journey” on the company’s web page; defining a successful journey as one where

the customer reaches the ‘order shipped’ event stage. After our team performed meticulous

feature engineering and cleaning on the dataset, we evaluated and trained the data on several

different models, such as Logistic Regression, Gradient Boosting, Neural Networks, XGBoost,

and Decision Trees, finding the XGBoost model to be the most effective, achieving the highest F1

score of 73%. Although our team faced many limitations due to the extensive size of the dataset

as well as our limited computing power, we believe our results to be of great value to the

Fingerhut team and to have the potential to be leveraged to learn more about their customer’s

behavior and evidently drive business in the coming years.

II.​ Introduction

In the contemporary landscape of e-commerce, Fingerhut stands out as a pioneering

online retailer offering a diverse array of products ranging from electronics to housewares,

apparel, and sporting goods. What distinguishes Fingerhut in the market is its unique credit

model, which empowers customers, particularly those with limited or poor credit histories, to

access products they might otherwise find financially challenging. Through the provision of

2

Fingerhut credit accounts, customers can make monthly payments on purchases, thus facilitating

their ability to afford desired items while simultaneously working towards rebuilding their credit

profile.

For the purpose of this analysis, we have been granted access to a dataset encompassing

Fingerhut's FreshStart customer universe, i.e. customers that are allowed to make a single

purchase up to their credit limit, typically ranging between $150-$200, before transitioning to a

revolving line. This dataset documents key events along the customer journey, from the initial

credit application to the pivotal moment of order shipment. Each customer's trajectory is

delineated by milestones, including the application for credit, the first purchase, the down

payment, and the subsequent shipping of the order. Additionally, the dataset captures ancillary

events such as website visits and cart additions, providing rich insights into customer behavior

and engagement.

Fingerhut seeks our expertise to delve into the intricacies of customer journeys. Whether

we unravel the typical trajectory a customer traverses, identify distinguishing features of a

complete journey, or discern potential obstacles or deviations from the ideal path, by

understanding the nuances of customer behavior, we aim to illuminate critical indicators that

may signify a customer’s likelihood of a completing a successful journey.

Upon completing the data preprocessing and conducting exploratory data analysis, our

team uncovered compelling insights within the data on the various event stages, timestamps, and

customer journeys. Thus, we decided that pursuing a model capable of predicting whether a

customer would make a purchase based on their first couple interactions on the website would

both leverage the combined strengths of our team as well as provide valuable information for

Fingerhut. After noting the year-over-year orders shipped decreasing in our initial data analysis,

3

we created this model with the intention of Fingerhut leveraging it to track customer habits and

utilize the insights the model provides to craft their website and user interface in a way that

would guide more customers towards making a purchase and hence drive business. Our team

also believes that the model could also provide Fingerhut information on why they were losing

customers that were on their website, but did not make a purchase.

To do this, we must first define a successful journey as one that results in the ‘order

shipped’ event, the inflection point at which a customer transitions from a closed-end, limited

line to a revolving line. As many prospecting customers’ journeys end before this crucial event,

analyzing when and where people lose interest can provide invaluable insights for the growth of

Fingerhut’s customer base. From here, we began to perform more specific data exploration to

find a model that would best work with the given data as well as how to formulate a dataset that

could be fed into the model, our main goal being to provide Fingerhut with a model that could

predict whether a customer would make a purchase as well as to provide insights that could

combat their declining revenue year-over-year.

III.​ Data Preparation

The given data from Fingerhut’s team was limited, featuring a maximum of 13 unique

features with some events perfectly correlating with others, such as ‘event_definition_id’ and

‘event_name’. Each row represented an individual customer event which made up a step in one

of thousands of customer journeys. This dataset presented certain challenges, including duplicate

rows with identical timestamps and a sequential index for journey steps that was disrupted upon

removal of such duplicated rows.

4

To address these challenges, we undertook a series of preprocessing steps to ensure data

integrity and maximize analytical potential. Firstly, we removed duplicate rows based on

identical timestamps and reindexed the 'journey_steps_until_end' column to preserve its

sequential property, ensuring consistency in journey step enumeration as shown in Figure 1.

Figure 1. Transformation of the ‘journey_steps_until_end’ column after duplicate removal.

Subsequently, we transformed the data into wide format by grouping all rows by

'customer_id', enabling a comprehensive view of each customer's journey across multiple

dimensions. Leveraging this wide-format structure, we performed extensive feature engineering

to extract insightful variables that could enable us to accurately predict customer journey

success. In total, we engineered 27 novel predictors to help conduct our analysis objectives,

listed and described in Appendix Table 1.

Notable features include 'num_journeys' and 'max_journeys', quantifying the frequency

and maximum length of customer journeys respectively. Furthermore, we delineated key

milestones such as 'first_purchase' and 'order_shipped’, enabling granular assessment of journey

progression and success. We also leveraged temporal aspects of our data using the

‘event_timestamp’ variable, such as the creation of the 'time_in_discover' and 'time_in_apply'

5

variables, shedding light on the duration spent in these specific journey stages. We explored

device usage patterns through 'initial_device', discerning whether customers accessed Fingerhut

via mobile devices or web browsers, and included lists of the beginnings of each customer’s time

with Fingerhut by adding a ‘first_n_events’ column (using n=5, n=20) as well as the time delta

between those events in a ‘time_since_last_event’ column. We then trained an LSTM model to

generate embeddings for the ‘first_n_events’ and ‘time_since_last_event’ variables to reduce

dimensionality of these variables while preserving the information within them. We hypothesized

that a customer’s initial interactions with Fingerhut could drastically affect their relationship with

the service, making the last two variables crucial for our analysis.

Furthermore, upon a carefully consideration while training the machine learning models,

we decided to drop 8 columns from the feature engineered dataset: ‘downpayment_cleared’,

‘first_purchase’, ‘max_milestone’, ‘downpayment_received’, ‘account_activation’, and

‘customer_id’, ‘first_20_events’, and ‘time_since_last_event’. This gave us a dataset with 27

columns, in which 10 columns are embeddings resulting from ‘first_20_events’ and

‘time_since_last_event’.

Lastly, all data preparation and feature engineering procedures were replicated on both

the original dataset and a 5% customer sample dataset, ensuring consistency and scalability in

model training and analysis. By curating the dataset with informative features, we have laid a

robust foundation for subsequent analysis and modeling.

IV.​ Data Exploration

There were a few things that we wanted to explore in order to learn more about our

dataset. We were very interested in the proportion of customers who ultimately completed a

6

purchase (as indicated by the ‘order shipped’ variable). We noticed that we have a very

unbalanced dataset as shown in Figure 2.

Figure 2. Proportion of customers with an Order Shipped.

Taking this into consideration. This gave us an accuracy benchmark for our models of around

80%.

We also wanted to investigate the ‘discover’ variable. This variable relates to fingerhut’s

advertising strategies, so we expected to see a measurable correlation in customers who

interacted with fingerhut’s marketing campaigns and their likelihood to complete a purchase. We

checked the proportion of customers who had and had not interacted with the ‘discover’ variable.

As seen in the barplot below, we actually found no significant difference between the amount of

customers who completed an order.

7

Figure 3. Proportion of customers with and without ‘Discover’ who shipped an order.

Another variable we were interested in is the number of steps a customer took through

their journey through the Fingerhut site. This varied dramatically for each customer. Many had

only one or two steps, but there were some that had over hundreds of steps. Considering there

were multiple outliers with over 1000 steps. We decided to display this distribution on a

logarithmic scale. As shown in the histogram, the majority of customers had journeys that were

between 10 and 100 steps.

8

Figure 4. Distribution of the maximum steps in each customer’s journey.

Finally, we also noticed an interesting trend in sales. Within the year, there seems to be a

large spike in sales around the end of the year in November/December. This is obviously very

typical for any retailer considering the amount of shopping people do around the holidays. We

also noticed a spike around March. However, the most noticeable trend that we saw was a

decrease in traffic over the last 3 years.

9

Figure 5. Weekly Order Analysis by Year.

This was something that we kept in mind as we built our model, understanding that the year, as

well as time-of-year, could have an impact on Fingerhut sales as well.

V.​ Classification Models

After delving into the wide format data set by providing a deep description of derived

features, the subsequent objective was to select the model that best fitted the data and exhibited

highest performance. In this section, we provide an in-depth analysis of the architectures,

methodologies, and strategies adopted, which included a diverse spectrum of models ranging

from statistical or boosting trees to a more abstract model such as a neural network.

An initial model testing on a proportionally preserved subset of the data revealed poor

performance due to imbalanced class proportions, with 80% representing customers being

unsuccessful in the ‘order_shipped’ goal and 20% those who did. To address this imbalance, two

strategies, upsampling and downsampling, were employed, each with its associated risks of

10

overfitting on the minority category or loss of valuable information. While these strategies

initially improved model performance, their biases led to a decision to retain the original class

proportions for realistic reporting of results.

For model training, we used the preprocessed original dataset with time embeddings,

which contains 1,665,374 rows and 27 columns, of which 10 columns are the resulting

embeddings from columns (‘first_20_events’ and ‘time_since_last_event’). First, we explored

seven different kinds of preliminary models: Logistic Regression, Decision Tree, XGBoost,

AdaBoost, Gradient Boosting, Light-GBM, and Gaussian Naive Bayes. The reason why we

considered these models was because we wanted to try out different methods that use different

methods for inference, for example ensemble methods and probabilistic models. Also, we used

the Logistic Regression model as our benchmark. After training and testing on these seven

models, we realized that out of these seven preliminary models, XGBoost had the best

performance (with LGBM being the second), while the other six preliminary models suffered

from their low F1 scores. Thus, we decided to move on to both tuning the hyperparameters for

the XGBoost model as well as designing new complex models for downstream classification

tasks. For tuning, we utilized the Optuna library to tune the specific hyperparameters:

‘n_estimators’, ‘max_depth’, ‘learning_rate’, ‘subsample’, ‘gamma’, ‘scale_pos_weight’,

‘reg_alpha’, and ‘reg_lambda’. This library utilizes a Bayesian Optimization approach to find the

best and optimal hyperparameters for our models, allowing us to decrease the number of training

iterations.

On the other hand, in an attempt to increase the metrics that previous models were

showing up, we designed a Neural Network in order to see if this kind of algorithm could extract

uncovered patterns in the data and leverage them in order to get a higher accuracy and f1 score.

11

This Neural Network was designed with the following architecture: five fully connected layers

with ReLU activations and Dropouts in between, L2 regularization, and finally activated by a

Sigmoid function. Before feeding the training data into the Neural Network, we also calculated

the corresponding weights for each label.

Lastly, we designed a framework that first clusters the data points into one of the two

clusters, then trained and tested separate XGBoost models. However, due to its worse

performance, we have decided to omit this design.

VI.​ Results

It is worth mentioning that the way we assess our models is really important while

choosing the best model, in this regard we can see that metrics play a crucial role in the measure

of performance. Therefore, after training our preliminary models we calculated initially the

accuracy metric which is the standard measure for model performance assessment. The results

can be seen in the following plot:

Figure 6: Accuracy of Models by Technique

12

The accuracy scores are divided into three different categories: the scores for the models

trained with the downsampled data, the scores with the models trained with upsampled data, and

the scores for the models trained with the original proportion of data. But the analysis over the

scores are not going to be performed over these results and this is due to the fact that certain

metrics can lead to misleading results due to the nature of the data. In this regard, the accuracy

metric is not always a reliable metric for evaluating the model performance and particularly in a

high unbalanced data set which is our case. Instead, the F1 score stands out as a robust measure.

The F1 score is calculated using the harmonic mean of precision and recall where its formula is

-score 𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In this sense, the model evaluation was entirely focused on improving the F1 score metric, which

was the one that trustworthy demonstrated the real performance of the models. The following is

the plot that contains the F1 scores of the models:

Figure 7. F1 Scores of Model by Techniques

13

​ For the downsampling scores, it is notable that there were models with an outstanding

performance such as the Voting Ensemble Model or the Neural Network or even more

noticeable, the Voting Ensemble Model while working with the upsampling technique. Despite

that all these performances were all good, the results don’t represent a very good representation

in a real scenario, but we think it is worthwhile including them in order to contrast the

performances if the data were all balanced.​

From the plot above, focusing on the scores for the original proportion, the 4 models with

best F1 scores were the XGBoost (tuned), Neural Network, Light-GBM, and Voting Ensemble

model. The naive XGBoost (before tuning) achieved an accuracy of 89.163% and a F1 score of

69.916%, and the naive LGBM achieved an accuracy of 88.438%, and a F1 score of 66.539%.

These two models performed reasonably well, but as mentioned in the previous part, we believed

that the XGBoost can be further improved in terms of its F1 score, especially its ability to

correctly identify label 1. In addition, the accuracies and f1 score of each model is listed in

Figure 8 below.

Figure 8. Accuracy and F1 Score of Models

14

​ For the tuning of the XGBoost model, we aimed to increase the F1 score instead of the

accuracy, as we believed that the model’s ability to correctly identify label 1 is more important

than its whole accuracy. The resulting score for the fine tuned XGBoost model is: 88.328% in

accuracy and 72.933% in F1 score. Even though the accuracy of XGBoost is lower than the

original by around 0.8%, we believe that this is a good tradeoff for the F1 score, which is almost

3% higher than the original one. We also plotted out the feature importance of the fine tuned

XGBoost Model. From the graph, we can see that the top 5 most important features are

‘initial_decive’, ‘event_embedding_3’, ‘most_repeated_event’, ‘has_prospecting’, and

‘event_embedding_4’.

Figure 9. XGBoost Feature Importances

​ For our Neural Network we had to take into consideration the proportion of classes in our

data, and so we used while fitting the model the following class weights : {0 : 0.62, 1 : 2.60}.

Consequently the model was trained over 5 epochs, utilizing the Adam optimizer algorithm and

15

the binary cross-entropy as our objective function to optimize, as the accuracy is the metric of

evaluation by default, we had to work with it.

​ In addition, we plotted out the confusion matrices for XGBoost (before tuning), XGBoost

(after tuning), and Neural Network. The plots are displayed below. From the confusion matrices,

we can see that both the fine-tuned XGBoost model and the Neural Network outperformed the

original XGBoost in their performance of the identifying customers who will have their orders

shipped (label 1 customers). Specifically, the XGBoost before tuning correctly identified

65.394% of label 1 customers, while the tuned XGBoost correctly identified 81.665% , and the

Neural Network correctly identified 94.129% (both XGBoost and Neural Network have less type

II errors). Note that this comes with a price: both the fine tuned XGBoost and the Neural

Network performed worse in identifying label 0 customers by mistakenly identifying them as

label 1. However, we believe that this is a good tradeoff since the losses of providing

advertisements / incentives to customers who are predicted to finish the whole journey would

likely be way less than the losses of losing real customers who are going to finish the journey.

Figure 10. Confusion Matrices

16

 Figure 11. F1 Scores in Cross Validation by Technique

Finally this last plot shows us the results using the Cross Validation technique for these

three different models along the three different techniques used in the project. We are focusing

on the original proportion and as we can observe there is a huge difference between the results

that XGBoost obtained compared to the GaussianNB and the Logistic Regression. This is a very

reliable technique that allows us to verify that indeed the metrics obtained in just one simple train

test split were actual metrics. Moreover, the percentage below represents the standard deviation

of the means in the f1 scores and in this case is very small which tells us that all these training

realizations of the XGBoost model across the 5 splits used in the CV technique had very similar

results.

17

VII.​ Conclusion

The results of our modeling and analysis reveal that we are able to create a model that

can predict whether a customer will purchase an item through the website based on the first 20

events on the website with an F1 score of 72.93%. This achievement marks a significant step

towards understanding the customer behavior and, we hope, paves the way for Fingerhut to

derive further insights and analyses to help the company grow in the future.

However, although the 72.93% accuracy is promising, our team acknowledges different

constraints and limitations that we faced as well as areas for improvement in the data and

modeling that could potentially allow us to yield even better results. A major limitation that our

team faced stemmed from the immense volume of the original dataset matched with our limited

computing power. The original dataset contained 64,911,906 rows of data. Processing the entire

dataset for cleaning alone required upwards of three hours. Thus, any iterative adjustments or

tests we wanted to perform would cause a similarly extensive duration, making the process of

modeling, analyzing, cleaning, and training extremely time consuming. Although there was a

smaller sample dataset available, which was 5% the size of the original dataset, this smaller

dataset introduces many significant risks, such as loss of granularity, overfitting of the model,

and omission of outliers and critical events. Our solution to this limitation involved utilizing the

smaller dataset for initial training, cleaning, and analysis, followed by running our end product

on the entire dataset. Although we yielded promising results, our team believes that access to

stronger computing power or a more manageable dataset would allow us to enhance the

predictive accuracy of our model even further and make further analysis regarding customer

behavior.

18

Our team also identified future steps that could be taken to potentially improve the

accuracy and fully explore the potential of the data. Due to clustering models' ability to group the

data in an unsupervised manner, we believe that this could help yield more accurate results by

allowing for customer segmentation through identifying distinct groups of customers based on

their behavior and interactions with the web page. Additionally, the grouping aspect could be

utilized to help feature engineering and potentially help improve the accuracy of the models by

providing more data on customer behavior patterns. The models we utilized in our project are

more aimed towards predicting outcomes based on input data. However, clustering could help in

discovering new structures and similarities in the data that our models were unable to detect,

hence increasing the accuracy and revealing more about Fingerhut customer trends.

Overall, our research provides Fingerhut with a model that is designed to predict whether

a customer will purchase an item, which can be leveraged to learn more about their customers as

well as their website to find ways to increase orders and evidently drive business. By analyzing

patterns and trends within the first interactions of customers on the website, our model opens the

door for Fingerhut to not only identify critical parts of the website that can influence purchasing

decisions, but also increase the ordering rates.

19

VIII.​ Reference

Harrison, M. (March 21, 2023). Effective XGBoost: Optimizing, Tuning, Understanding, and

Deploying Classification Models (Treading on Python) (1st ed.). MetaSnake.

IX.​ Appendix

Variable Description

num_journeys The number of journeys each customer has gone through.

max_journeys The number of steps of the longest journey per customer.

discover Whether or not the customer has gone through the 'discover' stage.

number_accounts The number of account_ids per customer_id.

more_one_journey Whether or not a customer has multiple journeys.

repeated_event The most repeated event a customer has experienced.

avg_length_seq The average journey length of each customer.

has_prospecting Whether or not the customer has experienced the 'prospecting' event.

has_pre_application Whether or not the customer has experienced the 'pre application' event.

approved_credit Whether or not the customer has achieved the 'approved_credit' milestone.

first_purchase Whether or not the customer has achieved the 'first_purchase' milestone.

account_activation Whether or not the customer has achieved the 'account_activation' milestone.

downpayment_received Whether or not the customer has achieved the 'downpayment_received' milestone.

downpayment_cleared Whether or not the customer has achieved the 'downpayment_cleared' milestone.

order_ships Whether or not the customer has achieved the 'order_ships' milestone.

max_milestone The highest milestone a customer has achieved.

20

initial_device Initial device used to access Fingerhut service.

time_in_discover The amount of time spent (seconds) in the 'discover' phase.

time_in_apply The amount of time spent in the 'apply for credit' phase.

first_n_events A list of the first n events experienced by the customer.

time_since_last_event The time between each of the n events from first_n_events.

total_time_spent The time between the first event and the nth event.

time_mean The average time between events.

time_std The standard deviation of time between events.

time_max The longest time between two events.

Appendix Table 1. Name and description of 25 feature engineered variables.

	Stats M148 Final Project
	I.​Abstract
	II.​Introduction
	III.​Data Preparation
	IV.​Data Exploration
	V.​Classification Models
	VI.​Results
	VII.​Conclusion
	VIII.​Reference
	IX.​Appendix

